Radiation Therapy in the Management of Breast Cancer

St. Mary’s 14th Annual Oncology Symposium

Julia Oh, M.D.
Assistant Professor
M.D. Anderson Cancer Center
November 8, 2008
2007 Estimated Cancer Cases

Women 678,060

- 26% Breast
- 15% Lung & bronchus
- 11% Colon & rectum
- 6% Uterine corpus
- 4% Non-Hodgkin lymphoma
- 4% Melanoma of skin
- 4% Thyroid
- 3% Ovary
- 3% Kidney
- 3% Leukemia
- 21% All Other Sites

- 178,480 invasive cases
- 62,030 in situ cases
- 2,030 male cases (1%)

Source: American Cancer Society, 2007

1980s: ↑↑use of mammography

2000s: ↓↓use of HRT

Sources: ACS, SEER
2007 Estimated Cancer Deaths

Women 270,100

- 26% Lung & bronchus
- 15% Breast
- 10% Colon & rectum
- 6% Pancreas
- 6% Ovary
- 4% Leukemia
- 3% Non-Hodgkin lymphoma
- 3% Uterine corpus
- 2% Brain/ONS
- 2% Liver & bile duct
- 23% All other sites

Source: American Cancer Society, 2007
Breast Cancer Death Facts

- 40,460 deaths in 2007
- 1990-2004: Death rates decreased by 2.2% annually
 - More screening
 - Better treatments
- Largest decline in women <50
- Race disparities are INCREASING
Strong Risk Factors

- **AGE:**
 - 30-39: 1 in 229
 - 50-59: 1 in 37
 - 80-89: 1 in 8
- Personal history of breast cancer
- Personal history of ADH or LCIS
- 1st degree family history of breast cancer
- Chest irradiation as a child or young adult
- Genetic mutations
Genetic Mutations

- **BRCA-1** (chromosome 17)
 - 65% lifetime risk of breast cancer
 - 40% lifetime risk of ovarian cancer
 - Frequently ER-

- **BRCA-2** (chromosome 13)
 - 45% lifetime risk of breast cancer
 - 10% lifetime risk of ovarian cancer
 - Frequently ER+

- Li-Fraumeni syndrome (p53 mutation)
- Cowden syndrome (PTEN mutation)
- Peutz-Jeghers syndrome (STK11 mutation)

Sources: NCI; Antoniou, *Am J Hum Genet* 2003
ACS Screening Recommendations

- Yearly mammograms starting at age 40
 - 15-20% relative risk reduction in breast cancer death
 - 1% absolute reduction in all-cause mortality

- Clinical breast exam every 3 years for women in their 20s and 30s, and every year for women age 40 and older
BSE is No Longer Recommended: Shanghai BSE Trial

- 266,064 women, ages 33-66
- Randomized to control arm or BSE
- No difference in breast cancer deaths
- No difference in diagnosis of invasive cancer
- More biopsies of benign breast lesions in BSE group (i.e., more harm than good)
- Conclusion: BSE should not be advocated; “breast self awareness” is sufficient

Thomas, JNCI 2002
Radiation Therapy in the Management of DCIS
DCIS: Mastectomy versus Breast Conserving Therapy

- No randomized comparisons available
- 1%-2% local recurrence after mastectomy compares favorably to BCT
- 1%-2% breast cancer mortality regardless of treatment approach
- BCT is preferable to mastectomy unless extent of disease prevents complete excision with acceptable cosmesis
DCIS: Randomized RT Trials

- Four randomized controlled trials, aggregate N>4000
 - NSABP B-17 (Fisher, *Semin Oncol* 1998)
 - EORTC 10853 (Bijker, *JCO* 2006)
 - SweDCIS (Emdin, *Acta Oncol* 2006)

- “no tumor at inked margins” on 3 of the 4 trials
 - 20% positive/unknown margins on SweDCIS

- Tamoxifen allowed on 1/4 trials
 - UK/ANZ – complicated multi-arm schema

- RT dose 50 Gy to whole breast
 - No boost on any of the trials
DCIS Randomized RT Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Time (years)</th>
<th>Overall Breast Recurrences</th>
<th>Invasive Breast Recurrences</th>
<th>DCIS Breast Recurrences</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B-17</td>
<td>12</td>
<td>No RT: 31.4%</td>
<td>RT: 15.7%</td>
<td>p<0.000005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No RT: 16.8%</td>
<td>RT: 7.7%</td>
<td>p<0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No RT: 14.6%</td>
<td>RT: 8.0%</td>
<td>p=0.001</td>
<td></td>
</tr>
<tr>
<td>EORTC 10853</td>
<td>10</td>
<td>Overall: 26%</td>
<td>RT: 15%</td>
<td>p<0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive: 13%</td>
<td>RT: 8%</td>
<td>p=0.0065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCIS: 14%</td>
<td>RT: 7%</td>
<td>p=0.0011</td>
<td></td>
</tr>
<tr>
<td>SweDCIS</td>
<td>5</td>
<td>Overall: 22%</td>
<td>RT: 8%</td>
<td>p<0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive: 9%</td>
<td>RT: 4%</td>
<td>p=sig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCIS: 13%</td>
<td>RT: 4%</td>
<td>p=sig</td>
<td></td>
</tr>
<tr>
<td>UK/ANZ</td>
<td>5</td>
<td>Overall: 14%</td>
<td>RT: 6%</td>
<td>p<0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invasive: 6%</td>
<td>RT: 3%</td>
<td>p=0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCIS: 7%</td>
<td>RT: 3%</td>
<td>p=0.0004</td>
<td></td>
</tr>
</tbody>
</table>
In 4 randomized trials, no subset has been identified that does not benefit from RT

However, risk of recurrence may vary based on:

- Tumor grade (EORTC)
- Tumor size (B-24)
- Margin status (B-17, EORTC, SweDCIS)
- Comedonecrosis (B-17, B-24)
- Multifocality (B-24)
- Symptomatically detected lesions (EORTC)
- Age ≤ 40 (EORTC)
BCS +/-RT for Favorable DCIS: RTOG 98-04

- MMG detected
- Grade 1-2
- \(\leq 2.5 \) cm
- Inked margins \(\geq 3 \) mm

- RT: 42.5-50 Gy, no boost
- Observation

- Closed in 2006 due to poor accrual (<1/2 of target enrollment)
- Analysis pending but results will be limited
Modified Van Nuys Prognostic Index

<table>
<thead>
<tr>
<th>Score</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (cm)</td>
<td>≤1.5</td>
<td>1.6 - 4.0</td>
<td>≥ 4.1</td>
</tr>
<tr>
<td>“Group”</td>
<td>- necrosis</td>
<td>+ necrosis</td>
<td>G3</td>
</tr>
<tr>
<td>Margins (mm)</td>
<td>>10</td>
<td>1 - 9</td>
<td><1</td>
</tr>
<tr>
<td>Age</td>
<td>>60</td>
<td>40-60</td>
<td><40</td>
</tr>
</tbody>
</table>

Total Score

- 4 - 6: lumpectomy alone
- 7 - 9: lumpectomy + XRT
- 10 - 12: mastectomy

Problems

- Not validated on external datasets
- Model revisions have likely resulted in over-fitting on the training dataset
- Only a small minority of all DCIS patients fall at either extreme

Silverstein, *Breast* 2003
Non-Randomized DCIS Trials: Harvard Observational Study

- Wide excision alone for “favorable” DCIS
 - Mammographic size \(\leq 2.5 \) cm
 - Margins \(\geq 1 \) cm
 - Predominantly nuclear G1 or G2
 - 6% of cases contained G3 disease
 - Comedonecrosis allowed (present in 39%)

- Tamoxifen not permitted
Non-Randomized DCIS Trials: Harvard Observational Study

- Closed early when local recurrence rate met predetermined stopping rules
- 158 patients accrued
- Median follow-up 40 months
- Local recurrence rate: 2.4% per patient-year
- Projected 5-year recurrence rate: 12%

Wong, JCO 2006
Non-Randomized DCIS Trials: ECOG 5194 Observational Study

- Wide excision alone for “favorable” DCIS
 - Grade 1-2, size <2.5 cm
 - Grade 3, size <1 cm
 - Margins ≥3 mm
 - Negative postoperative mammogram

- Tamoxifen allowed

Hughes, SABCS 2006
Non-Randomized DCIS Trials: ECOG 5194 Observational Study

<table>
<thead>
<tr>
<th>Grade 1-2</th>
<th>Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>580 patients</td>
<td>102 patients</td>
</tr>
<tr>
<td>Median tumor size 6mm</td>
<td>Median tumor size 7mm</td>
</tr>
<tr>
<td>Median margin 5-10mm</td>
<td>Median margin 5-10mm</td>
</tr>
<tr>
<td>31% declared intention to take tamoxifen</td>
<td>30% declared intention to take tamoxifen</td>
</tr>
<tr>
<td>5-yr local failure rate 6.8%</td>
<td>5-yr local failure rate 13.7%</td>
</tr>
</tbody>
</table>

Hughes, SABCS 2006
Benefit Seen in Elderly Patients

- SEER-Medicare analysis of 3409 women age ≥66
- Stratified by presence of any high-risk features:
 - Tumor >2.5 cm, high grade, comedo histology, age 66-69

<table>
<thead>
<tr>
<th>Low Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-yr Breast Recurrence</td>
<td>5-yr Breast Recurrence</td>
</tr>
<tr>
<td>No RT</td>
<td>No RT</td>
</tr>
<tr>
<td>8.2%</td>
<td>13.6%</td>
</tr>
<tr>
<td>p-value</td>
<td>p-value</td>
</tr>
</tbody>
</table>

- Recurrence rates without RT are comparable to ECOG 5194
- Proportional benefit of RT is comparable to NSABP B-17

Smith, *JNCI* 2006
Tamoxifen for DCIS: NSABP B-24

- n=1804
- Stratified by age and method of detection (MMG or PE)

Lumpectomy + RT (50 Gy, no boost)

Lumpectomy + RT (50 Gy, no boost) + Tamoxifen x5 yrs

5-year Results

- All breast events reduced from 13.4% to 8.2%
- Benefit in both ipsilateral and contralateral events
- Benefit greatest for women <50 (38% RRR vs 22% RRR)
- Toxicities greater in women >50 (TE events, GYN cancer)

Fisher, Lancet, 1999
Summary of DCIS Management

- Mastectomy or breast conserving therapy

- Give RT after BCS for most patients
 - Reduces local event risk by about one-half
 - Standard dose is 50 Gy
 - No evidence for boost, but reasonable for high risk (large, G3)

- Consider observation after BCS for select patients
 - <1 cm size, pure G1-2, with 5-10 mm negative margins, age>60

- Consider Tam for all patients, especially
 - ER+
 - Age <50 years old
Management of Early Stage Breast Cancer
Mastectomy vs BCT: Randomized Trials

- Seven randomized trials
- In aggregate 4100 patients with 3.3-20 years follow up
- Equivalent disease-specific and OS
- Local-regional control
 - Was not an endpoint for most trials
 - In-breast recurrences frequently censored
Local Control for Mastectomy vs BCT: Meta-Analysis

- *Indirect* 10-year comparisons suggest that BCT is equivalent to mastectomy for early stage disease:

<table>
<thead>
<tr>
<th></th>
<th>Node Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastectomy</td>
<td>8.0%</td>
</tr>
<tr>
<td>BCS+RT</td>
<td>10.0%</td>
</tr>
</tbody>
</table>
BCS vs BCS+RT: Randomized Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>n</th>
<th>Yrs</th>
<th>IBTR (%)</th>
<th>IBTR (%)</th>
<th>IBTR event</th>
<th>N stage</th>
<th>CT/HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B06</td>
<td>1137</td>
<td>20</td>
<td>39.2</td>
<td>14.3</td>
<td>1st</td>
<td>N0-1</td>
<td>CT</td>
</tr>
<tr>
<td>Britain</td>
<td>400</td>
<td>20</td>
<td>49.8</td>
<td>28.6</td>
<td>any</td>
<td>N0-1</td>
<td>both</td>
</tr>
<tr>
<td>Ontario</td>
<td>837</td>
<td>10</td>
<td>40</td>
<td>18</td>
<td>1st</td>
<td>N0</td>
<td>none</td>
</tr>
<tr>
<td>Milan III</td>
<td>579</td>
<td>10</td>
<td>23.5</td>
<td>5.8</td>
<td>any</td>
<td>N0-1</td>
<td>both</td>
</tr>
<tr>
<td>Uppsala</td>
<td>381</td>
<td>10</td>
<td>24</td>
<td>8.5</td>
<td>any</td>
<td>N0</td>
<td>none</td>
</tr>
<tr>
<td>NSABP B21</td>
<td>673</td>
<td>8</td>
<td>16.5</td>
<td>2.8</td>
<td>1st</td>
<td>N0</td>
<td>HT</td>
</tr>
<tr>
<td>Scotland</td>
<td>585</td>
<td>5.7</td>
<td>24.5</td>
<td>5.8</td>
<td>any</td>
<td>N0-1</td>
<td>both</td>
</tr>
</tbody>
</table>
Local Control with BCS vs BCS+RT: Meta-Analysis

Node Negative Patients

10 yr difference:
19% absolute
66% relative

Node Positive Patients

10 yr difference:
33% absolute
72% relative

EBCTCG, Lancet 2005
Breast Cancer Survival with BCS vs BCS+RT: Meta-Analysis

Node Negative Patients

Breast cancer mortality, %

15 year difference:

5.1% absolute
16.3% relative

Node Positive Patients

Breast cancer mortality, %

15 year difference:

7.1% absolute
12.9% relative

EBCTCG, Lancet 2005
Radiation after BCS Summary

- Improves local control by 20-30%
 - Two-thirds relative risk reduction

- Improves breast cancer survival by 5-7%
 - 15% relative risk reduction

Local control gains lead to survival gains!
Omission of RT for Widely Negative Margins: Milan III

Tumor ≤2.5 cm

Quadrantectomy + ALND

Quadrantectomy + ALND + RT (50 Gy + 10Gy boost)

10-year Results

- IBTR 23.5% without RT, versus 5.8% with RT (p<.001)

Veronesi, *Annals Oncol* 2001
Systemic Therapy vs RT for Favorable Disease: NSABP B-21

Tumor ≤1cm Node negative BCS+ALND

Tamoxifen x 5 years
RT (50 Gy +/-boost)
RT + Tam

Primary endpoint: ipsilateral breast tumor recurrence (IBTR)

Fisher, JCO 2002
Systemic Therapy vs RT for Favorable Disease: NSABP B-21

8-yr IBTRs:

Tam: 16.5%
RT: 9.3%
RT+Tam: 2.8%

RT benefited all age groups

Fig 1. Cumulative incidence of IBTR after treatment with TAM, XRT and placebo, or XRT and TAM. Pairwise comparisons: TAM v XRT + placebo: P = .006; TAM v XRT + TAM: P < .0001; XRT + placebo v XRT + TAM: P = .01.

Fisher, JCO 2002
PBI Rationale

- 20-40% of patients do not receive RT after breast-conserving surgery
 - proximity of RT facility
 - duration of standard therapy

- >70% of in-breast recurrences are at/near the tumor bed (Veronesi, *NEJM* 2002; Liljegren *JCO* 1999)

- Partial breast irradiation has the potential to
 - Control the tumor
 - Increase treatment compliance
 - Minimize side effects
PBI versus WBI: RTOG 04-13

DCIS or invasive cancer
Tumor ≤3cm
0-3 positive nodes
Breast-conserving surgery

Dec 2006: closed to low risk patients (ER+, node-, age>50)

- 1° endpoint: Local control
- 2° endpoints: DF, OS, cosmesis, side effects

Whole breast irradiation (45-50Gy in 1.8-2.0Gy fx, +/-boost)

Partial breast irradiation (physician chooses technique)

Multi-catheter brachytherapy (34Gy in 3.4Gy fx BID)

MammoSite (34Gy in 3.4Gy fx BID)

3D conformal external beam RT (38.5Gy in 3.85Gy fx BID)
PBI: Multicatheter Brachytherapy

Per RTOG 04-13:
Implant may be single plane or multi-plane
PBI: MammoSite

Per RTOG 04-13:
Distance from balloon to skin must be ≥ 5mm
Per RTOG 04-13:
Electrons not allowed
Beams may not be directed toward critical structures
RTOG 04-13: 3D Conformal EBRT
Target Volume Construction

GTV = Seroma + clips

CTV = GTV + 15mm – skin, pec

PTV = CTV + 10mm

PTV_eval = PTV – skin, pec
Most Data Still Short-Term

- Multicatheter brachytherapy:
 - Long-term Phase I/II data

- MammoSite:
 - Short-term registry data
 - Short-term Phase II data for DCIS

- 3D-conformal EBRT:
 - Short-term Phase I/II data
Long-term Data on PBI: Multicatheter Brachytherapy

- William Beaumont Hospital
- Phase I/II trial
- N=199
- Tumor ≤3 cm, N0-1 (82% T1 N0)
- Generous volume treated (tumor bed +2cm)
- 10-yr actuarial breast recurrence rate 3.8%
- 10-yr actuarial regional nodal failure rate 1.6%

Vicini, IJROBP 2007
PBI Summary

- PBI may prove to be an important advance in the treatment of early breast cancer

- However, it is still unproven against a highly effective and minimally toxic gold standard (whole breast irradiation)

- Therefore, it is best administered in the context of a rigorous clinical trial

- Physician support of RTOG 04-13 is crucial to generate high-quality evidence on PBI
PBI Off Protocol

- Follow the American Brachytherapy Society’s eligibility guidelines!
 - Age ≥50
 - Infiltrating ductal carcinoma histology
 - Tumor ≤3 cm, unicentric and unifocal
 - No EIC
 - Pathologically node negative

ABS Breast Brachytherapy Task Group, 2007
Accelerated Whole Breast RT

Canadian Trial
- **Whelan, SABCS 2007**
- T1-T2 N0
- Mostly T1 and age >50
- 50 Gy/25 fractions versus 42.5 Gy/16 fractions
- No boost given
- 12-yr results:
 - Identical local control
 - Identical overall survival
 - Identical cosmesis

UK Start-B Trial
- **Dewar, ASCO 2007**
- T1-T3 N0-N1
- Tumor size, age NA
- 50 Gy/25 fractions versus 40 Gy/15 fractions
- Stratified by +/-boost
- 5-yr results:
 - Identical local control
 - Better cosmesis with 40 Gy/15 fractions

Conclusions:
- 42.5 Gy/16 fractions is safe & effective for T1 N0 and age >50
- Decision to boost is independent of whole breast fx schedule
Timing Comparisons

- Standard 5 weeks of daily XRT (+/--boost)
- Canadian fractionation 4240 cGy in 3 wks
 - >50yo with T1N0
- RTOG Partial Breast Irradiation in 1 week
Radiation in the Management of Elderly Patients
Omission of RT for Elderly Patients: CALGB C9343

- Age ≥70
- Tumor ≤2cm
- Clinically node negative
- ER+ or unknown
- BCS, no ALND

- Tamoxifen x 5 years
- Tam + RT (breast and low axilla, 45Gy + 14Gy boost)

Endpoints: LRR, mastectomy, DM, survival

Hughes, NEJM 2004
Omission of RT for Elderly Patients: CALGB C9343

Trend toward increased mastectomies with Tam only (p=.07)

No difference in DM, breast cancer-specific survival, or OS

Hughes, NEJM 2004; SABCS 2006
Omission of RT in Elderly Patients: SEER-Medicare

- 8724 women age ≥70
- CALGB C9343 eligible
- IBTR rates similar to CALGB

However:
- Higher risk of subsequent mastectomy without RT (p<.001)
- RT most beneficial for women 70-79 with minimal comorbidity (8 yr IBTR 16% vs 3%)

<table>
<thead>
<tr>
<th></th>
<th>5yr IBTR</th>
<th>8yr IBTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RT</td>
<td>5.1%</td>
<td>8.0%</td>
</tr>
<tr>
<td>RT</td>
<td>1.1%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Smith, *JNCI* 2006
Life Expectancy for the Elderly

<table>
<thead>
<tr>
<th>Current Age</th>
<th>Life Expectancy (years)</th>
<th>Expected Age at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>23.53</td>
<td>84</td>
</tr>
<tr>
<td>70</td>
<td>15.72</td>
<td>86</td>
</tr>
<tr>
<td>75</td>
<td>12.29</td>
<td>87</td>
</tr>
<tr>
<td>80</td>
<td>9.22</td>
<td>89</td>
</tr>
<tr>
<td>83</td>
<td>7.59</td>
<td>90</td>
</tr>
<tr>
<td>84</td>
<td>6.88</td>
<td>91</td>
</tr>
<tr>
<td>85</td>
<td>6.42</td>
<td>91</td>
</tr>
</tbody>
</table>

- Healthy elderly women are likely to live long enough to risk increased relapse of breast cancer

Source: Social Security Administration
Discuss RT with all patients after BCS

Consider omitting RT for
- ≥ 70 with T1 N0, ER+ tumors
- Fit for and willing to take endocrine therapy x5 years

Omission of RT is probably best reserved for
- women age 70-79 with multiple comorbidities
- women age >80 (LE <8 years)

For some women, RT may be preferable to HT
Management of Intermediate Stage Breast Cancer
Main Difference is Nodal Risk

- Axillary involvement of 1-3 LNs predicts for:
 - Involvement of other regional nodes
 - Increasing risk of distant failure and death

- Tumor size and location may increase the regional nodal risk in node-negative patients

- Lymph nodes at risk include axillary, SCV, ICF, IMN
Nodal RT For Intermediate Dz

SCV RT
- NCCN and ASCO:
 - Category 2B recommendation for 1-3 +nodes
 - Insufficient evidence to make any recommendation in T3 N0 patients

IMN RT
- NCCN:
 - Category 3 recommendation for high-risk patients
- ASCO:
 - Insufficient evidence to make any recommendation for any patients
Nodal RT for Intermediate Disease: EORTC 22922

Axillary node+ or central/medial tumor
BCS or mastectomy

RT to breast/CW only

RT to breast/CW + SCV + IM

1° endpoint: Overall Survival
Closed to accrual; results pending
Nodal RT for Intermediate Disease: NCIC MA-20

BCS only
N+ or
T3 N0 or
T2 N0 and high risk (ER-, Gr3, LVSI)

of nodes +
chemotherapy
hormonal therapy
institution

1° endpoint: Overall Survival
Closed to accrual; results pending

RT to breast
RT to breast+
axilla+
SCV+IM
Target Delineation: SCV Nodes

- Conventional prescriptions using 6 MV photons miss the target in 80% of obese patients.
- For all BMI classes, CT-delineated targets and individually optimized treatment planning achieves the best coverage.

Liengsawangwong, *IJROBP* 2007
IMN XRT Technique

- Tumor bed
- IMN
- Lateral Tangents
- Medial Electrons
Alternative Technique

IM Nodes

Tumor Bed
Management of Breast Cancer in the Setting of Neoadjuvant Chemotherapy
Oxford Overview: Adjuvant CTX

Local Recurrence
- **LN- Disease**: 8% vs. 3%
- **LN+ Disease**: 29% vs. 8%

- 2/3 reduction w/ RT

Breast Ca Survival
- **LN- Disease**: none
- **LN+ Disease**: 5% for LN+ pts

- 60% vs. 55%

1428 women treated with mastectomy, AC chemotherapy +/- RT
Historical Guidelines for XRT

- Upfront surgery provided pathology
- Pathology was the gold standard
- ECOG, MDACC, NSABP
 - tumor size over 5 cm (T3)
 - 4 or more lymph nodes (N2)
Defining LRR Risk after NCT + Mastectomy

150 patients, 1974-1998 at MDACC

- treated on prospective clinical trials
- neoadjuvant chemotherapy
- modified radical mastectomy
- no radiation therapy

Buchholz et al., JCO, 2002
Factors Associated with LRR

Clinical Factors
- clinical stage
- T stage
- N stage

Treatment Factors
- tamoxifen use

Residual Cancer Burden (RCB)
- number of +LN
- primary tumor size
Multivariate Analysis

<table>
<thead>
<tr>
<th>Factors</th>
<th>p value</th>
<th>hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>clinical IIIB/C</td>
<td><0.001</td>
<td>4.5</td>
</tr>
<tr>
<td>4 or more + LN (ypN2)</td>
<td>0.008</td>
<td>2.7</td>
</tr>
<tr>
<td>no tamoxifen use</td>
<td>0.027</td>
<td>3.9</td>
</tr>
</tbody>
</table>
LRR According to Response

5-yr LRR by Path Response

- path CR (n=18) 19%
- residual disease (n=132) 28%

p=0.413

4/18 failures - Stages: T3N0, T2N2, T4N2, T4Nx
Recurrences in Clinical Stage I/II

Garg et al., Int J Radiat Oncol Biol Phys, 2004
Recurrences by Axillary RCB

- $n = 6$
- $n = 84$ (LRR 6%)
- $n = 42$ (LRR 8%)
- $\geq 4+ LN$ (LRR 67%)

$P = < 0.0001$
B-18 Study
1230 women with operable breast cancer were randomized to preop vs postop ACx4
- mastectomy patients did not receive radiation
- 87% of pts in the trial had T1, T2 tumors
- total population of NCT + mastectomy – 239 pts

Mamounas, SABCS, 2003
LRR According to Response

10-yr LRR by Path Response (B-18)

- breast CR w/ LN- or LN+ (n=13) 0%
- residual breast disease w/ LN- 10.5%
- residual breast disease w/ LN+ 20.3%

Not much different between 1-3+LN or ≥4 +LN
Is PMRT Necessary after a Favorable Response to Neoadjuvant Chemotherapy?
MDACC trials +/- PMRT

713 patients
Neoadjuvant
Doxorubicin-based chemotherapy

Mastectomy

136 patients
No XRT

579 patients
+ XRT

XRT: Non-randomized
6 consecutive prospective MDACC trials
1974-1998

Huang et al., JCO, 2005
Caveats

• Radiation use was not randomized

• Selection of who received radiation

• Excluded recurrences < 2 months of Rx
 – 11% of no XRT group excluded
 – 3% of XRT group excluded
Chemotherapy Phase II and III Trials

- All treated with doxorubicin
- Mastectomy: median LN = 15 removed
- Radiation to chest wall and LNs
 - median dose 50 Gy
 - boost to 60Gy
Comparisons Between Groups

Irradiated patients had **significantly worse disease:**

- Clinical T3-4
 - RT: 56%
 - No RT: 85%
- Clinical N2-3
 - RT: 44%
 - No RT: 20%
- Minimal response
 - RT: 24%
 - No RT: 11%
- 4 or more pos. nodes
 - RT: 39%
 - No RT: 22%
- Close/pos. margins
 - RT: 12%
 - No RT: 3%

P < .01 for all factors
Local-Regional Recurrence

\[P < .0001 \]
Local-Regional Recurrence By Extent of Disease

<table>
<thead>
<tr>
<th>Factor</th>
<th>No Radiation (%)</th>
<th>Radiation (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical T-stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
<td>8</td>
<td>.535</td>
</tr>
<tr>
<td>T2</td>
<td>10</td>
<td>7</td>
<td>.408</td>
</tr>
<tr>
<td>T3</td>
<td>22</td>
<td>8</td>
<td>.002</td>
</tr>
<tr>
<td>T4</td>
<td>46</td>
<td>15</td>
<td><.0001</td>
</tr>
<tr>
<td>Clinical N-stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>23</td>
<td>10</td>
<td>.014</td>
</tr>
<tr>
<td>N1</td>
<td>14</td>
<td>9</td>
<td>.062</td>
</tr>
<tr>
<td>N2-3</td>
<td>40</td>
<td>12</td>
<td><.0001</td>
</tr>
<tr>
<td>Pathological tumor size, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>13</td>
<td>8</td>
<td>.051</td>
</tr>
<tr>
<td>2.1-5.0</td>
<td>31</td>
<td>14</td>
<td>.002</td>
</tr>
<tr>
<td>≥ 5.0</td>
<td>52</td>
<td>13</td>
<td>.001</td>
</tr>
<tr>
<td>No. of positive nodes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>4</td>
<td>.010</td>
</tr>
<tr>
<td>1-3</td>
<td>13</td>
<td>11</td>
<td>.636</td>
</tr>
<tr>
<td>≥ 4</td>
<td>59</td>
<td>16</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Local-Regional Recurrence

Clinical Stage I-II

9% vs 5%
P = 0.82

Clinical Stage III

20% vs 9%
P = 0.009
Local-Regional Recurrence

<table>
<thead>
<tr>
<th>Multivariate analysis</th>
<th>Hazard</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No radiation</td>
<td>4.1</td>
<td>.0001</td>
</tr>
<tr>
<td>≥20% pos. nodes</td>
<td>2.9</td>
<td>.0001</td>
</tr>
<tr>
<td>Stage ≥ IIIB</td>
<td>2.3</td>
<td>.001</td>
</tr>
<tr>
<td>Nodes sampled < 10</td>
<td>2.0</td>
<td>.005</td>
</tr>
<tr>
<td>No tamoxifen</td>
<td>1.9</td>
<td>.034</td>
</tr>
<tr>
<td>ER negative</td>
<td>1.8</td>
<td>.014</td>
</tr>
<tr>
<td>Path size >2cm</td>
<td>1.7</td>
<td>.026</td>
</tr>
</tbody>
</table>
Cause Specific Survival

Univariate Analysis by Stage & Lymph Node Status:
RT improved CSS ~20%

Clinical T4

≥ 4 nodes

Stage IIIB/C

P=.011
39%

P=.002
22%

P=.015
44%

P=.002
24%
Cause-specific Survival

<table>
<thead>
<tr>
<th>Univariate subset analysis</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>• clinical stage IIIB/C</td>
<td>0.002</td>
</tr>
<tr>
<td>• clinical T4 tumors</td>
<td>0.015</td>
</tr>
<tr>
<td>• 4 or more positive nodes</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Radiation improved CSS ~ 20%
Cause-specific Survival

<table>
<thead>
<tr>
<th>Multivariate analysis</th>
<th>Hazard</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage (\geq) IIIB</td>
<td>2.4</td>
<td>.0001</td>
</tr>
<tr>
<td>Path. tumor size (>0) cm</td>
<td>2.3</td>
<td>.001</td>
</tr>
<tr>
<td>(\geq) 4 positive nodes</td>
<td>2.1</td>
<td>.0001</td>
</tr>
<tr>
<td>No radiation</td>
<td>1.8</td>
<td>.001</td>
</tr>
<tr>
<td>Nodes sampled (<10)</td>
<td>1.5</td>
<td>.004</td>
</tr>
<tr>
<td>ER negative</td>
<td>1.5</td>
<td>.003</td>
</tr>
</tbody>
</table>
LRR in Stage III Patients after a pCR

McGuire et al., Int J Radiat Oncol Biol Phys,
DM-Free and OS in Stage II Patients after a pCR
Radiotherapy Techniques to Decrease Skin Toxicity
CT Simulation For Breast Radiotherapy

- Optimizes target delineation
 - Tumor bed
 - Regional nodes

- Facilitates patient tailored 3D-conformality
 - Better coverage of target volumes
 - Reduces cardiac and pulmonary exposure
 - Reduces acute effects
 - May improve cosmetic outcome
Traditional Physical Wedges

- Wedge acts as a tissue compensator for smaller separation at nipple region, thereby reducing anterior hot spots
Intensity Modulated Breast Radiation

- Usually involves standard tangent beam arrangement
- Forward or inverse planned MLC segments
- Less contralateral breast dose than physical wedging
- Better dose homogeneity than dynamic wedging
- Reduces acute effects, which should improve QOL and cosmesis
IMRT Field in Field Treatment Technique

- Forward-planned intensity modulation

- Open tangents + 2-8 static MLC-reduced fields
 - All fields share same beam orientation
 - MLC-reduced fields block regions with >100% of dose
Field in Field: 1st MLC Reduction

Highest dose hot spot is blocked on medial field

Relative weighting of blocked field is increased until hot spot disappears
Field in Field: 2nd MLC Reduction

Next highest dose hot spot is blocked on lateral field

Relative weighting of blocked field is increased until hot spot disappears
Field in Field Technique

- Process is repeated until an optimally homogenous treatment plan is generated
- No extra work for physicians (no organ contouring)
- Labor-intensive for dosimetrists/physicists
Inverse Planned IMRT

- Standard tangents or multi-beam
- Breast and normal structures are contoured
- Cost functions applied to critical structures
- Reduces dose to heart
 - if multiple beams are used, low dose is spread to more normal tissues
- Labor intensive for physicians

Chiu, Med Phys 2002; Krueger, Semin Rad Oncol 2002
IMRT versus Wedging: Canadian Phase III Trial

Breast-only RT
Stratified by breast size and use of boost

IMRT 50 Gy +/-16 Gy boost
Wedging 50 Gy +/-16 Gy boost

1° Endpoints: Grade 3-4 acute skin reactions
Grade 2-4 moist desquamation

Pignol, ASTRO 2006
IMRT versus Wedging: Canadian Phase III Trial

- **IMRT arm:**
 - Tangent beams with segment modulation
 - Most (78%) inverse planned

- **Wedge compensation arm:**
 - Most treated with dynamic wedging

- **Skin toxicity assessed by a blinded researcher**
 - Weekly during treatment
 - Until 6 weeks post-treatment

Pignol, ASTRO 2006
Phase III Trial of IMRT vs Wedging: Results

- IMRT reduced moist desquamation:

<table>
<thead>
<tr>
<th>Moist desquamation</th>
<th>WC</th>
<th>IMRT</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inframammary fold</td>
<td>43%</td>
<td>26%</td>
<td>.0012</td>
</tr>
<tr>
<td>All quadrants</td>
<td>48%</td>
<td>31%</td>
<td>.0019</td>
</tr>
</tbody>
</table>

- IMRT reduced any acute skin reaction in the inframammary fold (OR .262)

Pignol, ASTRO 2006
Prone Positioning Technique
Prone Dosimetry
Prone Breast Irradiation: Outcomes

- MSKCC: prone standard fractionation WBI
 - 245 patients treated between 1992-2004
 - Median follow-up 4.9 years
 - 5-yr IBTR rate 6.1%
 - Acute grade 3 skin reactions 4%
 - Chronic grade 2 skin toxicity 4.4%
 - Chronic grade 2 subcutaneous toxicity 13.7%

Stegman et al, IJROBP 2007
Radiotherapy Techniques to Decrease Cardiac Toxicity
Respiratory Gating for Cardiac Protection in Breast Radiotherapy

- Best technique is deep inspiration breath hold
- Displaces heart from tangent field edge
- Useful in select left breast cancer patients
- Varian RPM system used at MDACC is well tolerated by patients and only modestly increases simulation and daily treatment time
Cardiac Shape & Location Change
Image Guidance in Treatment Delivery: Respiratory Gating

Reflective marker

Infrared tracking camera
DIBH Reduces Cardiac Exposure

Free Breathing Deep Inspiration Breath Hold
Among early stage left breast cancer patients receiving tangential breast RT:

<table>
<thead>
<tr>
<th></th>
<th>Heart V50 (mean)</th>
<th>Left ventricle V50 (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>3.9%</td>
<td>12.7-14.6%</td>
</tr>
<tr>
<td>DIBH</td>
<td>0.7%</td>
<td>1.5-2.7%</td>
</tr>
<tr>
<td>p-value</td>
<td><.001</td>
<td><.001</td>
</tr>
</tbody>
</table>

Krauss, *IJROBP* 2005
DIBH and Cardiac Protection

Among advanced stage left breast cancer patients receiving comprehensive RT via a 3-field technique (deep tangents + AP SCV field):

<table>
<thead>
<tr>
<th></th>
<th>Heart V50 (median)</th>
<th>LAD V50 (median)</th>
<th>NTCP: cardiac mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>19.2%</td>
<td>88.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>DIBH</td>
<td>1.9%</td>
<td>3.6%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Korreman SS et al, Radiother Oncol 2005; IJROBP 2006
Summary

- RT confers LC benefit in node- disease and a survival benefit in node+ disease

- After neoadjuvant chemotherapy, PMRT for Stage II should consider RCB
Summary

- Patients with Stage III require PMRT even after achieving a pCR

- Modern technology and imaging permit safe delivery with minimal toxicity
Acknowledgements

Radiation Oncology Faculty

Tom Buchholz
Welela Tereffe
Eric Strom
George Perkins
Wendy Woodward
Kuan Yu